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A conformal decomposition finite element method
for modeling stationary fluid interface problems
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SUMMARY

A method is developed for modeling fluid transport in domains that do not conform to the finite element
mesh. One or more level set functions are used to describe the fluid domain. A background, non-conformal
mesh is decomposed into elements that conform to the level set interfaces. Enrichment takes place by
adding nodes that lie on the interfaces. Unlike other enriched finite element methods, the proposed
technique requires no changes to the underlying element assembly, element interpolation, or element
quadrature. The complexity is entirely contained within the element decomposition routines. It is argued
that the accuracy of the method is no less than that for eXtended Finite Element Methods (XFEM) with
Heaviside enrichment. The accuracy is demonstrated using multiple numerical tests. In all cases, optimal
rates of convergence are obtained for both volume and surface quantities. Jacobi preconditioning is shown
to remove the ill-conditioning that may result from the nearly degenerate conformal elements. Copyright
q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many fluid dynamics problems require the ability to model fluid transport on domains that do not
conform to a mesh. Examples include bubble and droplet transport, mold filling, and general free
surface flows that involve large interfacial motion and topological evolution. Conformal techniques
like Arbitrary Lagrangian Eulerian (ALE) methods are subject to mesh tangling and preclude
critical phenomena like coalescence and breakup.
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Recently, eXtended Finite Element Methods (XFEM) [1] and Generalized Finite Element
Methods [2] have been developed for modeling physics on interfaces that do not coincide with
the finite element mesh geometry. These methods address the interfacial physics and discontinu-
ities without requiring the user to generate a boundary-fitted mesh. XFEM methods have been
developed for fluid mechanics that include the interfacial physics of Stokes flow past particles
[3, 4] and surface tension [5, 6]. In order to allow a discontinuous description across the inter-
face, these methods require some level of enrichment of the elements that span the interface.
Additional unknowns are assigned to one or more of the mesh entities (elements, nodes, sides,
or edges) that are associated with these interfacial elements. Additional equations are formulated
for these unknowns, and quadrature techniques [7, 8] are developed to account for the resulting
discontinuous interpolation.

In the present work, an alternate approach is taken where a background, non-conformal mesh is
decomposed into elements that conform to the boundaries of the fluid domain. Enrichment takes
place by adding nodes that lie on the interfaces. Essentially, this is a generalization of the Finite
Element Method using a Cartesian Grid with Added Nodes (FEMCGAN) [9] to unstructured finite
elements. The focus of FEMCGAN is on Cartesian grids, and in that context it has been considered
undesirable compared with Immersed Finite Element (IFE) methods. This is because the added
nodes increase the size of the linear system of equations and significantly modify the structure of
the matrix, rendering it unsolvable by Cartesian grid solvers [9].

Here, the conformal decomposition concept is applied to unstructured meshes of triangular
and tetrahedral finite elements. The method is termed the Conformal Decomposition Finite
Element Method (CDFEM). Like XFEM, CDFEM can be used to solve a multi-material
problem starting with a mesh that does not conform to the geometry of the materials. This
is done by decomposing the background mesh into elements that do conform to each of
the materials. The starting point for this decomposition is to generate one or more level
set fields that are used to describe the material geometry on the background mesh. These
level set fields define how the non-conformal elements are decomposed into conformal
sub-elements.

A primary goal of this paper is to quantify the accuracy of CDFEM. This is a concern
because the level set surface cuts arbitrarily through the background mesh, and the quality
of the resulting conformal elements may be quite poor. In [9], the accuracy of the approx-
imating space in FEMCGAN was proved using the properties of the sub-elements formed
by cutting the two-dimensional Cartesian grid. No similar analysis is included here. Instead,
algorithms are designed that seek to maximize the quality of the resulting conformal elements.
Theoretically, it is argued that the method is at least as accurate as XFEM methods in
certain limits. The implementation of interfacial Dirichlet conditions is discussed since
this has presented difficulties for XFEM approaches [10–12], but is handled trivially in
CDFEM.

The accuracy of the method is quantified for multiple fluid problems using numerical examples.
Specifically, simulations of potential flow in two and three dimensions are used to test the robustness
and accuracy of the method in the context of Dirichlet and Neumann boundary conditions. Next,
incompressible two-phase flow is considered to test the method for fluid–fluid interfaces. Last, flow
about a periodic array of spheres is simulated, and the accuracy of the drag force is examined. These
problems involve stationary fluid interfaces that do not move over the course of the simulation.
This work is intended to verify the accuracy of the technique before applying it to moving interface
problems in future work.
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2. CONFORMAL DECOMPOSITION FINITE ELEMENT METHOD THEORY

2.1. Comparison to XFEM with Heaviside enrichment

Both CDFEM and XFEM can be used to describe problems with interfacial discontinuities. Figure 1
shows a comparison of the finite element descriptions that result when a piecewise linear triangle
element is intersected by an interface (indicated by the red line) for both CDFEM and XFEM
with Heaviside enrichment. In XFEM with Heaviside enrichment, a finite element field, uh , can
be expressed as

uh(x)=H(�(x))
∑
i
Ni (x)u

+
i +(1−H(�(x)))

∑
i
Ni (x)u

−
i (1)

where Ni are the standard nodal basis functions and H(�) is the Heaviside function of the level
set field, �. Written this way, u+

i and u−
i are the values of the nodal field for the positive and

negative values of the level set field, respectively. Thus, with this form of enrichment, XFEM
yields two independent piecewise linear descriptions such that the materials on each side of the
interface can be independently described. The unknowns, however, remain at the vertices of the
original non-conformal element. In this way, the material shown in blue and the material shown in
green are described by separate piecewise linear approximations with basis functions derived from
the standard basis functions of the non-conformal element. In comparison, CDFEM enriches the
element by introducing new nodes where the interface intersects the edges of the non-conformal
element. This produces a single piecewise linear approximation for the blue material, while the
green material is described by two piecewise linear elements.

It is instructive to consider the conditions under which the CDFEM and XFEM descriptions
are equivalent. In both methods, the blue material is described by a piecewise linear approxima-
tion. The two descriptions will be equivalent if the two interfacial nodes introduced in CDFEM
are constrained to agree with the XFEM approximation. For the piecewise linear approximation
considered here, that means that each interfacial node is constrained to be the same as the linearly

(a)

(b)

+

+

Figure 1. Comparison of finite element descriptions in CDFEM and XFEM with Heaviside
enrichment: (a) independent piecewise linear approximations in XFEM with Heaviside enrichment

and (b) piecewise linear elements produced in CDFEM.
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interpolated edge value in XFEM. If this condition is satisfied, the CDFEM description and the
XFEM description with Heaviside enrichment will be identical for the blue material. Likewise, the
descriptions for the green material will be identical if the new interfacial nodes are constrained to
lie in the space of the piecewise linear XFEM approximation for that material. While this discus-
sion considered piecewise linear elements, the same conclusion may be drawn for any element
type as long as the conformal elements are capable of replicating the same functions as the parent
element.

In this discussion, it becomes clear that the discrete space introduced in CDFEM contains the
space used in XFEMwith Heaviside enrichment, since the XFEM space can be recovered by adding
constraints on the nodes added in the conformal decomposition. According to [9], this property
guarantees that the CDFEM accuracy is no less than that afforded by XFEM with Heaviside
enrichment.

The relationship between these methods has interesting practical consequences. A primary
motivation for CDFEM is to provide a layer of encapsulation separating all consideration of
enrichment from the element assembly operations. This is not accomplished in XFEM where
interpolation and quadrature are significantly modified to accommodate the enrichment. Based
on the above arguments, an XFEM system can be assembled by first assembling the CDFEM
description and then applying the constraints on the added nodes at the linear system level. This is
very similar to the methods for handling constrained nodes in h-adaptivity. See [13] for a thorough
discussion of multiple techniques for handling constrained nodes in the context of finite element
assembly. Therefore, CDFEM provides a useful technique for assembling systems based on XFEM
with Heaviside enrichment. By introducing the conformal mesh and the associated geometric
constraints, the XFEM system can be formed using standard finite element assembly code with
no modification whatsoever to account for the enriched description.

2.2. Interfacial Dirichlet conditions

The relationship between CDFEM and XFEM with Heaviside enrichment also has interesting rami-
fications for the application of interfacial Dirichlet conditions. This has proven to be a research issue
in the context of XFEM methods [10–12]. In CDFEM, however, interfacial Dirichlet conditions
are handled trivially by applying them directly to the interfacial nodes. So in one limit, CDFEM
can recover the XFEM approximation by introducing appropriate constraints. On interfaces with
Dirichlet conditions, however, these same nodes are subject to the Dirichlet constraints. The appli-
cation of Dirichlet conditions in XFEM can therefore be considered to be the over-specification of
the CDFEM problem. In this case, the XFEM constraints and Dirichlet constraints are being applied
simultaneously, resulting in an over-constrained system. The consequences of this are the spurious
oscillations encountered in XFEM that must be handled by selectively removing constraints, or
by introducing stabilization or some other form of extra dissipation. None of these are required in
CDFEM, where the Dirichlet constraints can be applied directly to the interfacial nodes. This is
tested extensively in the numerical problems below.

3. CONFORMAL DECOMPOSITION FINITE ELEMENT METHOD IMPLEMENTATION

In CDFEM, one or more level set functions are used to describe the geometry on an unstruc-
tured, non-conformal mesh. These level set fields are then used to define how the non-conformal
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Figure 2. Angle-based decomposition of a non-conformal triangle into conformal triangles.

elements are decomposed into conformal sub-elements. The convention used here is to define
interfaces where the level set changes sign. Up to 2n materials can be described using n level set
fields.

In this work, the level set field is assumed to consist of a piecewise linear field on triangular or
tetrahedral elements. Thus, the interface consists of line segments in two-dimensions, and polygons
in three-dimensions. Ignoring degenerate cases for a moment, the decomposition of a triangular
element results in a triangular region and a quadrilateral region on opposing sides of the interface,
as shown in Figure 2. To form a connected mesh of triangular elements requires decomposing the
quadrilateral region into 2 or more conformal triangles. The choice of how this decomposition
is performed will affect the quality of the resulting elements. In the sections below, strategies
are developed for performing this conformal decomposition for both triangular and tetrahedral
elements. First, however, the procedure for handling degeneracies is described.

3.1. Degeneracy handling

In general, the conformal decomposition must robustly handle degenerate cases. These occur
whenever the interface passes exactly through a node. In addition, a robust scheme is needed for
handling nearly degenerate cases. If nearly degenerate elements are not addressed, the resulting
matrix system may be numerically singular. This issue was previously identified in context of
XFEM with level sets [14].

The general procedure used to decompose the elements involves first cutting all edges that
are crossed by the interface, followed by a triangulation step in which the sub-elements are
formed from the resulting conformal edges. An edge is considered to be crossed if the level
set values at the two nodes that support the edge have different signs. The sign of the level
set is considered to be ‘negative’ if its value is less than zero. It is considered to be ‘positive’
if it is greater than or equal to zero. This choice for how to handle nodes that are exactly
zero is clearly arbitrary, but they must be handled consistently. Every crossed edge is processed
and a node is generated at the crossing. The coordinates of this node are calculated by linear
interpolation on the edge. For an edge with nodal level set values of �1 and �2, the interface node is
placed at

xi =x1+�(x2−x1) (2)
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where x1 and x2 are the coordinates of the nodes and the position, � is found from linear interpo-
lation:

�= ‖�1‖
‖�1−�2‖

(3)

If, however, �<� or �>1−�, a new node is not generated. Instead, the interface is considered to pass
through the nearest node of the edge. In this work, we take �=10−4. This algorithm is essentially
the same as that used in [14], where the level set value at the nearest node was set to zero in these
degenerate cases. A detailed study of the sensitivity to this decomposition parameter has not been
performed. It is expected that selecting too large of a value could cause significant errors due to
the disagreement between the prescribed geometry and the decomposed geometry. On the other
hand, too small of a value could cause multiple nodes to be created that are numerically coincident.
Neither of these symptoms were encountered in any of the simulations for the chosen value.

In the subsequent triangulation step, the original vertex nodes and added edge nodes are
connected into sub-elements. Because the edge nodes may be coincident with the vertex nodes,
degenerate sub-elements may result, which can be identified by checking for duplicate nodes. Only
non-degenerate sub-elements are retained in the decomposition.

3.2. Triangle decomposition

The description above shows that choices must be made in the process of obtaining a conformal
decomposition, and that these decisions will affect the resulting element quality. In the two-
dimensional case, at least two triangle elements will be formed from the quadrilateral region
formed by cutting the element with a line. Additional triangles could be formed by adding one
or more Steiner points, but that is avoided here to minimize the number of sub-elements formed
by the decomposition. In graph theory and computational geometry, Steiner points are additional
vertices that are not part of the input.

Therefore, the decomposition strategy for non-degenerate triangles comes down to the choice
of which pair of opposing vertices to connect to break the quadrilateral region into triangles. For
the case shown in Figure 2, this means choosing whether to connect AD or BE . The strategy
taken here is to choose the diagonal that cuts the largest interior angle of the quadrilateral, shown
by the dotted line in the figure. This is motivated by the work of Babuška and Aziz [15], which
showed that the accuracy of finite element solutions degrades seriously as angles approach 180◦,
but the same is not true as angles approach 0◦.

3.3. Tetrahedron decomposition

The decomposition of non-conformal tetrahedra into conformal sub-elements is more complicated
than the two-dimensional case. When a plane cuts a tetrahedron, different subdomain topologies
are generated depending on the number of nodes that lie on each side of the plane, as shown in
Figure 3. An even more difficult issue is that the sub-element decomposition must take care to
provide compatible discretizations across element faces.

All tetrahedra that are crossed by the interface plane either have three nodes of one sign and one
node of the other sign, or have two nodes of each sign. In the first case, shown in Figure 3(a), the
lone node, together with the three interfacial nodes formed by cutting the crossed edges, forms a
conformal tetrahedron. The three other vertex nodes with the three interface nodes create a wedge
shaped region that must be further decomposed into tetrahedra. For the second case, shown in
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Figure 3. Isosurfaces in a linear tetrahedron: (a) three nodes of one sign (A, B, C) and one node with the
other sign (D) and (b) two nodes of each sign (A, D and B, C).

Figure 3(b), each side of the interface consists of two vertex nodes and four interface nodes to
form a wedge-shaped region. So the algorithm for decomposing a non-conformal tetrahedron into
conformal tetrahedra consists of determining the signs of the vertex nodes, adding interface nodes
to the crossed edges, and then decomposing any wedges into conformal tetrahedra.

It is this step of decomposing the wedges that must consider the requirement of forming
compatible discretizations across element faces. A wedge decomposition is shown in Figure 4(a).
Each of the three quadrilateral faces of the wedge must be decomposed by choosing which pair of
opposing vertices to connect to generate two triangles. To provide compatible discretizations, the
algorithm must decompose each face identically when it is processed from either of the owning
elements. This requirement of compatible discretization across faces would naturally lead to a face-
based criterion for selecting the diagonal. Ideally, we would like to use the same algorithm discussed
for the two-dimensional decomposition. The problem is that not all combinations of choices are
tetrahedralizable. Figure 4(b) shows a Schonhardt’s polyhedron, which is not tetrahedralizable
without the addition of one or more Steiner points [16]. Adding points is avoided because of the
large number of sub-elements that would be produced. Any face-based criterion, including one
based on the length of the diagonals, will suffer this same issue.

Instead, a partially node-based algorithm is used that has proved simple and robust across
numerous tested applications. Node-based algorithms are guaranteed to provide a tetrahedralizable
polyhedron, since the algorithm will result in diagonals on two of the faces of the wedge to
emanate away from the same node. It is the lack of this feature that leads to the Schonhardt’s
polyhedron. The algorithm used in this work distinguishes between faces that lie on the interface
and those that do not. For interfacial faces, the face-based largest angle criterion is used to select
the diagonal. For the remaining faces, the decision is based on the magnitude of the level set
function at each of the vertices. On these faces, the diagonal is selected such that they connect the
node with the largest level set magnitude to the node opposite it. The rational for this algorithm is
that it will preferentially choose to form new edges that are not aligned with the interface. While
this algorithm has been shown to provide accurate and robust results, it is a place for possible
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(a) (b)

Figure 4. Decomposition of a wedge into tetrahedra: (a) a wedge that may be decomposed
into 3 tetrahedra and (b) Schonhardt’s polyhedron, which is not tetrahedralizable without

the addition of Steiner points.

improvement in the future. If points are to be added to improve the quality of the decomposition,
it is not clear whether these points should be added to the interior of the wedge or to the faces.

The above algorithm must be modified slightly to handle the case where multiple nodes have
the same level set magnitude to within the precision of the machine. In these cases, the selection is
based on some other nodal property. Ideally, an integer quantity like global node identifier would
be used. If such a quantity is not available (as in parallel decompositions), we have successfully
used the nodal coordinates as a selection criterion. Because the nodes have unique coordinates,
this test is guaranteed to provide a unique identifier, resulting in a compatible discretization.

4. RESULTS

The proposed conformal finite element decomposition technique is tested on three steady-state
problems from fluid dynamics: potential flow about a cylinder and sphere; steady viscous two-phase
flow between concentric cylinders; and three-dimensional incompressible flow about a periodic
array of spheres.

4.1. Two-dimensional potential flow about a cylinder

When posed in terms of the velocity potential, �, potential flow results in a Laplacian equation
subject to Dirichlet and Neumann boundary conditions:

∇ ·∇�=0 (4)

This provides a good test of the method since the application of Dirichlet conditions on embedded
boundaries has proven to be a research issue [10–12]. The starting mesh is a non-conformal,
unstructured mesh of triangular elements, shown in Figure 5(a). Two distance functions are gener-
ated, one for describing the cylinder surface, the other to describe an outer concentric circular ring
that defines the extent of the computational domain. The radii of the inner and outer surfaces are
0.15 and 0.45, respectively, while the non-conformal mesh has unit extents in each direction. The
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Figure 5. Decomposition of the non-conformal triangular mesh into a conformal one for the simulation
of potential flow about a circular cylinder: (a) non-conformal mesh with level set surfaces indicated by
heavy curve and (b) coarsest conformal mesh. Color indicates the magnitude of the velocity potential.

zero isosurfaces of the distance functions, which approximate the inner and outer radii, are also
shown. These distance functions are calculated at each node using the exact distance to the nearest
surface. The resulting isosurfaces only approximate the original circular boundaries because they
are generated from the isosurfaces of the piecewise linear interpolant of the distance functions.
The mesh that results from the conformal decomposition is shown in Figure 5(b). It is apparent
that many of the conformal elements have small angles. A primary purpose of this study is to
determine if optimal convergence rates can be obtained in spite of these low quality elements.
Because the interface cuts the mesh arbitrarily, the mesh quality of the decomposed elements
is not expected to improve with uniform refinement of the non-conformal mesh. Likewise, it is
not expected to appreciably worsen with refinement. The relative volume of these low quality
elements will decrease rapidly, however. For these reasons, the conformal mesh quality is not
directly assessed in this study, but instead, the resulting accuracy is examined.

The surface of the cylinder is described by a zero normal flux, which is modeled using the
natural finite element boundary condition. On the outer surface a Dirichlet condition is applied
using the analytical solution evaluated at the surface nodes. The analytical solution for the velocity
potential in polar coordinates (r,�) is given by

�(r,�)=
(
1+ R2

i

r2

)
Ur cos(�) (5)

where Ri is the cylinder radius. The magnitude of the velocity potential, U , is chosen to be a
function of the cylinder radius and the domain radius, Ro, according to

U = R2
o

R2
o−R2

i

(6)
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Figure 6. Convergence of potential flow about a circular cylinder.

The mesh shown in Figure 5(b) shows the coarsest mesh used in the convergence study. The
color indicates the numerical solution for the velocity potential. The CDFEM solution for the
potential flow is obtained using two modules within SIERRA mechanics, specifically KRINO and
ARIA [17, 18]. First, the KRINO module initializes the level set field and performs the conformal
decomposition of the initially non-conformal mesh. The ARIA module then solves a Laplacian
equation for velocity potential subject to the applied boundary conditions.

Figure 6 shows the L2 norms and H1 seminorms of the error as a function of the mesh density,
evaluated on the volume and on each of the cut surfaces. The coarse mesh is uniformly refined to
provide progressively finer meshes. The relative mesh density is given by ho/h=2n where n is the
number of levels of uniform refinement. All convergence rates are optimal for the linear triangle
elements used in the simulation. The L2 norms converge quadratically and the H1 seminorms
converge linearly. This is remarkable when compared with results reported in [12] for Dirichlet
conditions on curved, embedded surfaces in XFEM.

Besides accuracy, another concern in CDFEM methods is the effect on the conditioning of the
resulting system of equations. Because nearly degenerate elements are generated by the conformal
decomposition, it is expected that ill-conditioning may result. This is tested by computing condi-
tion number estimates as the mesh is refined. The TRILINOS package [19] is used to solve the
linear system while also providing an estimate of the condition number. The conjugate gradient
method is used as a solver while a Lanczos matrix is formed to estimate the extreme eigen-
values. Figure 7 shows the estimated condition number for the CDFEM system with and without
Jacobi preconditioning. For comparison, the estimated condition number for a simple conduction
problem assembled on the uncut non-conformal mesh is also plotted. Both with and without Jacobi
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Figure 7. Estimated condition number for flow about a circular cylinder.

preconditioning, the simple conduction problem exhibits the expected O(h−2) scaling for the
condition number. While the CDFEM system without preconditioning exhibits a similar rate of
growth, the condition number is more than 10 times higher. This confirms that conformal decompo-
sition does indeed degrade the conditioning of the system of equations. This is true even though the
CDFEM mesh has significantly fewer degrees of freedom, as the elements outside of the domain
of interest have been removed. After applying simple Jacobi preconditioning, however, this ill-
conditioning is essentially removed. On sufficiently fine meshes, the preconditioned system exhibits
better conditioning than the conduction system on the uncut mesh. This result is consistent with
the results from anisotropic mesh refinement [20] where it was found that simple diagonal precon-
ditioning removed the ill-conditioning due to mesh degeneracy, leading to the same asymptotic
growth in the condition number as arises for uniform mesh refinement. In practice, this means that
the system of equations produced in CDFEM are readily solved using standard, iterative solvers.

4.2. Three-dimensional potential flow about a sphere

Similarly, the potential flow about a sphere is computed. Again Neumann conditions are used on
the surface of the body while Dirichlet conditions are applied along the outer boundary, using
the analytical solution. For this case, the analytical solution for the velocity potential, �, in polar
coordinates (r,�) is given by

�(r,�)=
(
1+ R3

i

2r3

)
Ur cos(�) (7)
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Figure 8. Convergence of potential flow about a sphere.

where Ri is the sphere radius. Here, the magnitude of the velocity potential, U , is chosen to be a
function of the sphere radius and the domain radius, Ro, according to

U = R3
o

R3
o−R3

i

(8)

The radii are given by Ri =0.15 and Ro=0.45, and the non-conformal mesh has unit extents in
each direction.

A plot of the resulting convergence is shown in Figure 8. Once again, optimal convergence rates
are obtained. It is interesting that these convergence rates are obtained even though the resulting
angles of the faces of the conformal elements were not optimized. Likewise, the dihedral angles
were not considered in the decomposition. It is unknown if alternate strategies might be even more
effective at lowering the approximation error.

4.3. Two-dimensional, two-phase, incompressible, viscous flow

The potential flow examples show the ability to apply different types of boundary conditions along
embedded interfaces. This example shows the ability to capture the effect of material disconti-
nuities across an interface in the context of incompressible fluids. The two-phase flow between
co-rotating concentric cylinders is simulated. Figure 9 shows the mesh and example numerical
solution with the color indicating the magnitude of the x-velocity. Again a non-conformal mesh has
been decomposed, this time into 4 regions. The two annular regions are retained for the two fluids.
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Figure 9. Decomposed mesh for one of the simulations of two-phase flow in the annular space between
concentric cylinders. Color indicates the magnitude of the x-velocity.

The outer boundary is rotated counter-clockwise, while the inner boundary is rotated clockwise.
The analytical solution for the azimuthal velocity for the inner fluid is given by,

v�(r)=
R2

���−R2
i �i

R2
�−R2

i

r+ R2
�R

2
i (��−�i )

R2
�−R2

i

1

r
for Ri�r�R� (9)

while for the outer fluid it is given by,

v�(r)=
R2
o�o−R2

���

R2
o−R2

�

r+ R2
o R

2
�(�o−��)

R2
o−R2

�

1

r
for R��r�Ro (10)

where Ri is the radius of the inner cylinder, Ro is the radius of the outer cylinder, and R� is the
radius of the interface. Here,the radii are given by Ri =0.15, R� =0.3, and Ro=0.45, and the
non-conformal mesh has unit extents in each direction. The angular velocity of the inner and outer
cylinders are �i =−1/Ri and �o=1/Ro, respectively, so that the magnitude of the velocity on
each cylinder is unity. The angular velocity of the interface, ��, is a function of the inner and
outer fluid viscosities, �i and �o, and is given by

�� = �i R
2
i (R

2
o−R2

�)�i +�oR
2
o(R

2
�−R2

i )�o

�i R
2
i (R

2
o−R2

�)+�oR2
o(R

2
�−R2

i )
(11)

Dirichlet conditions are used on both the inner and outer surfaces to enforce this motion. The
inner fluid is 4 times more viscous than the outer fluid, so a jump in the velocity gradient exists
at the fluid–fluid interface. After the conformal decomposition, this gradient jump is contained in
the basis of the resulting conformal sub-elements. This is not true for non-conformal elements.
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Figure 10. Convergence of incompressible, two-phase flow in an annulus.

The ARIA module within SIERRA mechanics solves the incompressible Stokes equations
for the velocity field within the annulus. Since piecewise linear elements are used for both
velocity and pressure, stabilization is required. Here, a relatively new stabilization method is
employed that utilizes a projection method to circumvent the BB or inf–sup compatibility condi-
tion [21]. This Polynomial Pressure Projection Stabilization (PPPS) is significantly simpler to
implement than the Pressure Stabilizing Petrov–Galerkin (PSPG) and contains no adjustable
parameters.

Figure 10 shows the L2 and H1 seminorms of the error on the volume and on the inner, outer,
and interface surfaces. The H1 seminorm for the interface is evaluated from the elements within
the inner annulus that touch the interface. Optimal convergence rates are obtained in each norm.
The ability of CDFEM to capture the discontinuous velocity gradient is demonstrated in Figure 11,
which shows the radial gradient of the azimuthal velocity component, �v�/�r , as a function of
radius. The curve indicates the analytical solution, which exhibits a jump at the fluid–fluid interface.
The numerical points are obtained by plotting the piecewise constant value on each conformal
element as a function of the radial position of the centroid of the element. The non-conformal mesh
used in this simulation was generated by applying five levels of uniform refinement to the mesh
shown in Figure 5(a). While the deviation from the analytical solution increases slightly near the
inner cylinder and the fluid–fluid interface, the sharp jump in the gradient is clearly captured with
no ringing or diffusive artifacts. This example demonstrates the ability of CDFEM to accurately
capture the weak discontinuities associated with discontinuous material properties.
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Figure 11. Discontinuous velocity gradient, �v�/�r , in two-phase flow between concentric cylinders.

4.4. Three-dimensional, stokes flow about a periodic array of spheres

The final application is that of the Stokes flow about a simple cubic packing of spheres. The flow in
a unit cell is computed with the original non-conformal domain decomposed into one that conforms
to the sphere. The flow is symmetric across boundaries that are tangent to the flow direction. This
is imposed with a Dirichlet condition zeroing the component normal to these boundaries. For the
inlet and outlet, a pressure boundary condition is imposed weakly on the component of velocity
in the flow direction by adding the contribution

q=−p◦n+�n·∇vt (12)

This boundary condition adds back the stress contribution for inlet/outlet flows where the pressure,
p◦, is prescribed. Here, � is the viscosity, ∇v is the velocity gradient, and n is the outward normal
to the boundary. This boundary condition is used in open-flow applications to set the pressure
datum. The assumption of a fully developed profile is implicit in this expression where n·∇v=0
has been used. The other two components of velocity are zeroed via Dirichlet conditions. No-slip
is applied on the sphere for all three components of the velocity with Dirichlet conditions.

Solid fractions ranging from 0.001 to the simple cubic packing limit of 0.5236 are simulated. The
Stokes equations are again solved using ARIA, with the same stabilization used for the previous
test. The drag force is not evaluated using the pressure and velocity gradient due the low accuracy
of the velocity gradients. Instead, the momentum equation residuals are evaluated prior to the
applications of the Dirichlet boundary conditions. These residuals represent the nodal tractions.
A much better approximation of the total drag force is obtained by summing these nodal forces.
In Figure 12, the drag force, non-dimensionalized by the analytical value for a single sphere,
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Figure 12. Drag force for flow about a periodic array of spheres as a function of solid fraction.

is shown compared against results obtained by Zick and Homsy [22] using a boundary integral
technique. Very good agreement is obtained across the entire range of solid fractions. To quantify
the agreement, a convergence study was done for a solid fraction of 0.125. For this packing, Zick
and Homsy predict a dimensionless drag force of 4.292. Figure 13 shows the difference between
the CDFEM results and this prediction as the mesh is refined. For comparison a reference line is
shown for quadratic convergence. This comparison does not provide a formal quantification of the
error since the Zick and Homsy prediction also includes numerical truncation error. Nonetheless,
the convergence rate appears to be approaching second order for this drag calculation. Richardson
extrapolation of the force predicted on the two finest grids yields a value of 4.292.

5. SUMMARY

In this work, a method is developed for simulating transport processes on domains defined by one or
more level set functions on an unstructured mesh of triangular or tetrahedral elements. The method
is termed the Conformal Decomposition Finite Element Method because the non-conformal mesh
is decomposed into elements that conform to the level set description. Enrichment takes place by
creating new nodes where the edges of the mesh are intersected by the level set interfaces.

CDFEM is closely related to XFEM [1] with Heaviside enrichment. In fact, the method is shown
to be at least as accurate as XFEM. In addition, CDFEM readily accommodates Dirichlet boundary
conditions without requiring stabilization or constraint reduction, as is needed in XFEM. Dirichlet
conditions on curved surfaces remain robust and converge optimally over several decades of error
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Figure 13. Convergence of drag force for flow about a periodic array of spheres
with a solid fraction of 0.125.

reduction. For problems where an XFEM description is desirable, it can be recovered from the
CDFEM description by formulating simple constraints for the created nodes. While the nearly
degenerate conformal elements are shown to detrimentally impact the conditioning of the system
of equations, this ill-conditioning is removed by simple, Jacobi preconditioning. Consequently, the
system of equations produced in CDFEM are readily solved using standard iterative solvers.

Future work will examine CDFEM for moving interfaces. The goal is to get the best features
of interface capturing methods, i.e. level set methods, and moving mesh methods, i.e. Arbitrary
Lagrangian Eulerian (ALE) methods.
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